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We examine the effect of a solid wall on the closure of a spherical 
cavitation cavity or pocket. It is demonstrated that asymmetric flow 
substantially reduces the induced pressure and rate of closure for the 
cavity containing the gas, while in the case of a vapor cavity asym- 
metry of flow leads to conclusions qualitatively different from those 
which follow from the classical Rayleigt~ solution for an infinite fluid. 

Based on the method of re f lec t ions ,  the m a t h e m a t i -  
cal appara tus  for the desc r ip t ion  of the phenomena i n -  
volved in the c lo su re  of sphe r i ca l  cavi t ies  conta in ing a 
gas n e a r  a sol id boundary  has been developed in detai l  
[1]. The rad ia l  o sc i l l a t ions  at the wall  of a sphe r i ca l  
cavi ty  conta in ing  a l a rge  quant i ty  of gas have been 
studied in [2]. We employ the s ame  methods below to 
examine  the c losu re  at the wall  of a cavity with a r e -  
l a t ive ly  low gas content ,  as is  c h a r a e t e r i s t i c  for  the 
phenomenon of vapor  cavi ta t ion.  

L imi t ing  o u r s e l v e s  to the re f lec t ion  of a s ingle  
source  and a s ingle  dipole,  which is  equivalent  to ne -  
g lec t ing  powers  of e = R/2b  above the f i r s t  as sma l l  
in c o m p a r i s o n  with uni ty ,  we can wr i te  the flow po- 
ten t ia l  in the f o r m  

q~ = R2 dR {i 1 
x ~ + y~)z/2 4 

R* db '{'("X2-'~ y " 
2 dt ~3/2 

, } 
[(x - -2b)  ~ -k- g.,.lZ/~ 

x - -  2b 
[(x ------2b)~ f]3/z } �9 

The f i r s t  t e r m s  in the b r a c e s  co r r e spond  to the 
rad ia l  and t r a n s l a t i o n a l  mot ion of a r ea l  sphere ,  while 
the second t e r m s  co r re spond  to the re f l ec t ion  of that 
mot ion at the point with the a b s c i s s a  x = 2b. 

The kinet ic  energy of the l iquid can be ca lcula ted  
f rom the va lues  of the potent ia l  and i t s  de r iva t ives  at 
the boundary  su r faces ,  these  values  having been  de -  
t e r m i n e d  f rom the boundary  condi t ions ;  equal ly  accu -  
r a t e  is the fol lowing value of the k ine t ic  energy:  

v = 2,,p ,~ '  ( d,~ '/~ (l + ~) + ~o m : ,~b "~ 
dt : - - 3 -  [ - ~ - )  " (~) 

There  is  no t e r m  which takes  into cons ide ra t ion  the 
mutua l  effect of the rad ia l  and t r a n s l a t i o n a l  mot ion  on 
the magni tude  of the kinet ic  energy,  s ince  that  t e r m  
has the o r d e r  O(e2). The second t e r m  in (2) r e p r e s e n t s  
the kinet ic  energy  for  the mot ion  of a sphere  in an i n -  
f in i te  fluid, s ince  the inf luence  of the wall  in t roduces  a 
connect ion into the o rde r ,  i . e . ,  O(e2). Use of the va lue  
for  the k ine t ic  energy  f rom (2) by means  of the method 
of gene ra l i zed  coord ina tes  enables  us  to de r ive  a s y s -  

tern of differential equations for the radial and trans- 

lational motion of the cavity: 

~24 2e~h~--~-~ + 1 = 0 ,  (3) 

(3 ') 

where  

t? ~ b dR ( O_~ t u2 

db ~ 1/2 ~ dt 2 , 
p ~  ' , o  

~ "  arab RoP , 6 - -  Pgo 

dd2 Pc Pc 

The system of differential equations (3) has been 
derived with the assumption that the gas in the pocket 

is adiabatically compressed, i.e., y = 4/3. With the 

cavity removed to infinity from the wall we have ~ 

0, ~ ~ 0, and ~ ~ 0, and consequently, the left- 
hand part of the second equation is identically zero, 

while the first equation changes into the familiar 
equation for the radial motion of a cavity in an infi- 
nite fluid 

~ + -2- u' + 1 = o. (4) 

The solut ion of this equation can be der ived  a n a l y t i -  
cal ly  [3J. The veloci ty  of the pocket boundary  is given 
by the r e l a t ionsh ip  

~* = { ~ - [ ~ ] - 3 - - 1 -  48 (~1-'-  ~1-3)]}'/2. (5) 

The m a x i m u m  veloci ty [sic] on c losure  has the value 

�9 . f (1 +36)4--25663 J'/2 
~max = 38453 

5.1.10 -~ (1 + 128) 1/2 8 -3/2 . (6) 

The approx imate  equal i ty  he re  and below co r re sponds  
to low gas contents ,  i . e . ,  5 ~ 10 -2. The m i n i m u m  
cavity rad ius  is 

36 36 
~mi, 1 + 3 6 - - 5  ~/z ~ 1+38 (7) 

The m a x i m u m  p r e s s u r e  co r re sponds  to the ins tan t  of 
c losure ,  and when the condit ion e _< 1 is  sa t i s f ied  we 
hay e 
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, , O , ~ a x =  Pm~x--Po _ _  

Po 
2~(I + 3~)(1 + 36 --6a/~) ~ 2~ (1 +9g) 

27~1~ ~ 27~16 ~ 
(s) 

In the case  of a vapor  cavity (5 = 0) we can ca lcu-  
late [4] the t ime  of i ts  complete  c losure :  

. . . .  0.915. (9) 

In analogy with the method employed in the solut ion 
of Eq. (4), excluding the t ime  t and t r ea t i ng  the rad ius  
~? as  an independent  va r i ab le ,  we can reduce  the o r de r  
of s y s t e m  (3) to unity:  

v 'v~l ( l+  e)-}- v ~ -}- 2 e - -  - -  2e~l} ' )  

(lo) 
~1-- z- +1 =0, 

[~"rl + I$' (3 "-I- v' ~ ) -i- 6a" = O' v (10') 

whe re 

v = ~ ,  v =  dv ~, d~ ~ r 

Analyt ica l ly ,  the s y s t e m s  of d i f fe ren t ia l  equat ions 
(3) and (10) cannot be in tegra ted .  The solut ion is  
achieved n u m e r i c a l l y ,  with the use  of compu te r s ;  s y s -  
t em (3) was solved by the Runge-Kut ta  method, and 
sys t em (10) was solved by the i t e ra t ion  method. The 
d i f fe rence  in the r e su l t s  of the so lu t ions  does not ex-  
ceed 1%. Simul taneous  with the d e t e r m i n a t i o n  of the 
k inemat ic  c h a r a c t e r i s t i c s  of cavi ty  motion,  we ca lcu-  
lated the p r e s s u r e  at the wall  and at the c r i t i ca l  point 
b, where  the p r e s s u r e  is  at  i ts  m a x i m u m .  The u t i l i z a -  
t ion of the Lagrange -Cauchy  in t eg ra l  and the value of 

the potent ial  f rom (1) make it poss ib le  for us to de r ive  
an exp res s ion  for  the p r e s s u r e  at this  point in the 
form 

~ =  P--Po 
Po 

= 4s ( 2 ~ +  ~1~') . 4 e 1 ( 5 ~  -}-, ~1~')-}- 16 ~a~ '. (11) 

In the case  of an inf ini te  fluid [a] at a g rea t  d i s t ance  
f rom the cavity 

~* = 2~ ( 2 ~ ' +  ~'~). (12) 

Consequent ly , .  with suff ic ient ly  adequate  d i s tance  
between the cavity and the wa l l - - i n  which case  the s e c -  
ond and th i rd  t e r m s  in (11) can be neg lec ted- - the  p r e s -  
ence of the wall  unde r  the condi t ion of equal i ty  b e -  

t w e e n  the rad ia l  ve loc i t i es  and acce l e r a t i ons  leads to 
a doubl ing of the p r e s s u r e .  

The in i t ia l  condit ions for  which the solut ion of the 
sys t em of equat ions (3) and (10) was c a r r i e d  out c o r -  
r esponds  to the a s sumpt ion  that the cavi ty  is at r e s t  
at the i n i t i a l  ins tan t  of t ime  and that the p r e s s u r e  dif-  
f e rence  between inf ini ty  and the ins ide  of the cavity is 

given.by Ap = P0(1 -- 5) when t = 0, ~? = 1, f~ = rio, ~ = 
= 0, B = 0. The cavi ty  growth phase which follows the 
c ompr e s s i on  phase subsequent  to the cavi ty  r each ing  
i ts  m i n i m u m  d imens ion  ~?min was not ca lcula ted ,  s ince  
the so lu t ion- -as  in the case  of an inf ini te  f lu id - - fo r  
~min is  s y m m e t r i c .  

The n u m e r i c a l  ca lcu la t ions  were  c a r r i e d  out for  
four  values  of the gas contents :  5 = 0, 10 -4, 10 -3, 
10 -2 , and for  seven va lues  of the in i t i a l  d i s tance  f rom 
the wall:  f~0 = i .1 ,  1.2,  1.5, 2.0, 5.0, 10, 100. For  
the case  in which fi0 ~ ~o, we use  an ana ly t ica l  so lu-  
t ion.  

F igu re  1 as an example shows the r e s u l t s  f rom the 
ca lcu la t ion  of cavi ty  c lo su re  for  the case /30=  1.5, 5 = 
= 10 -4 in the fo rm of cu rves  showing ~?, fl, ~, ~, • = 
= /3 /Bo ,  o~ = T / A T * ,  and ~ as a funct ion of the r e l a t ive  
rad ius  7. Ana lys i s  of these  r e s u l t s  shows that on c lo-  
su re  the veloci ty  of the cavity toward the wall  is of the 
s ame  o r d e r  of magni tude  as the rad ia l  veloci ty .  The 
bas ic  t r a n s l a t i o n a l  d i sp l acemen t  of the cavity occur s  
du r ing  the f inal  s tages  of c losure ,  and when 77 = ~min 
the veloci ty  of the t r a n s l a t i o n a l  mot ion reaches  i ts  
m a x i m u m .  The p ic tu re  for the rad ia l  mot ion c o r r e -  
sponds qual i ta t ive ly  to the c losu re  of a gas - f i l l ed  cav-  
ity in an inf in i te  f luid;  however ,  quant i ta t ive ly  speak-  
ing, the veloci ty ,  acce le ra t ion ,  and induced p r e s s u r e  
a re  cons ide rab ly  s m a l l e r ,  while the m i n i m u m  rad ius  
and c lo su re  t ime  a r e  g r ea t e r .  F i g u r e  2 shows the r e -  
su i t s  f rom a ca lcula t ion  of the veloci ty  as a funct ion 
of both the rad ius  and the in i t i a l  d i s tance  f rom the 
wall  for  a gas content  of 5 = 0. Our a t tent ion is  drawn 
to the fact that,  qual i ta t ively ,  the effect of a reduct ion 
in the in i t ia l  d i s tance  f rom the wall  is ana logous  to the 
effect of an i n c r e a s e  in the gas content  when the cavity 
in an inf in i te  fluid is  c losed.  The r e s u l t s  f rom the ca l -  
cula t ions  of the m i n i m u m  cavity r ad ius  ~?min(f~0; 5) a re  
shown in Fig.  3. 

Ana lys i s  of the de r ived  r e s u l t s  shows that the 
g r e a t e r  the in i t ia l  d i s t ances ,  the s m a l l e r  the gas con-  
tent  and that these  d i s t ances  a r e  affected by the p r e s -  

f o  2 

/0 

+_f 

-/0 

-fo~ 

Fig. 1. 

,,/ J ,  2 " /  

Func t ions  7, B, 7, B, X, ~, a n d ~  
ve r sus  the r e l a t i ve  rad ius  ~ f o r  fi0 = 1.5 
and 5 = 10-4: 1) ~; 2) fl; 3) ~; 4) ~*; 5) • 

6) a ;  7) ~. 
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Fig .  2. R a d i a l  v e l o c i t y  of c l o s i n g  v a p o r  cav i ty  (6 = 0) a s  a 
f unc t i on  of  the  r a d i u s  ~ fo r  v a r i o u s  i n i t i a l  d i s t a n c e s  f r o m  
the  wal l :  1) G0 = 1.1; 2) 1.2; 3) 1.5; 4) 2; 5) 5; 6) 10; 

7) 100. 

ence of the wall. Unanticipated is the substantial in- 
fluence of the wall on the closure of a cavity with a gas 

content of 6 __< 10 -4 at a distance as large as/~0 = i00. 
This result indicates the strong effect of even slight 
asymmetry of flow on the final stage of closure; this is 
also borne out by the qualitative difference in the be- 
havior of the vapor cavity (6 = 0) at the wall and in an 

infinite fluid: despite the absence of gas in the cavity, 
complete closure of the cavity does not occur. 

The explanation of the derived result lies in the fact 
that in the presence of a wall a portion of the potential 
energy--which the fluid exhibits at the initial instant of 

time--changes into the kinetic energy of translational 

motion, so that the presence of the wall leads to a re- 

duction in the velocity of radial motion fortheboundary 
of the cavity, while in the case of a vapor cavity it 

leads to the appearance of conditions under which its 
complete closure proves to be impossible. This con- 
clusion is a consequence of the assumption that the 
cavity retains its spherical shape. Indeed, because of 

the accelerated translational motion, the diagram 
showing the pressure distribution over the surface of 

! 

i0-2 

fO-:~ ' a!  
2 "3 # 5" 8 8 tO 20 30 40 ~o 

Fig. 3. Minimum cavity radius ~min(fl06) and function 

Xmin(B0): 1) 6 = 10-2; 2) 10-3; 3) 10-4; 4) 0; 5) }{min(~0). 

the cavity is exceedingly nonuniform, in connectionwith 

which--in the later stages of closure--the cavity must 

undergo strong deformation, subsequently collapsing. 

It can be demonstrated that the distribution of pres- 

sures over the surface of a moving sphere is described 

by the relation 

w h e r e  

~,=I~ 9cosO --5 + IS~ cosO , (13) 
8 2 

0 = arctg fig-. 
x 

In c o n n e c t i o n  wi th  the  cond i t i on  tha t  the cav i ty  r e -  
t a in  i t s  s p h e r i c a l  shape ,  in  the  o v e r - a l l  b a l a n c e  of 
f o r c e s  app l i ed  to the  b o u n d a r y  of the  cav i ty ,  the  s u r -  
f a c e - a v e r a g e d  p r e s s u r e  p l ays  a r o l e :  

=_j_14 m • 
$ 

• cos* 0 sin 0 d 0 - -  . sin 

0 0 

-t- - -  cos0 s i n 0 d 0  = - - - -  (14) 
4 

0 

The last integral in (14) is equal to zero; consequently, 
the average pressure resulting from the nonsteady na- 

ture of the motion is equal to zero. Thus, because of 
the translational motion of the cavity, a pressure is 

developed on the cavity surface, the average magni- 

tude of this pressure is determined by the Velocity, 
and it is a negative value, which is equivalent to the 

presence in the cavity of a gas with a pressure deter- 

mined from relationship (14). When the cavity attains 
its minimum dimension, its velocity of translational 

motion and, consequently, its tensile stresses are at 
their maximum. 

Figure 4 shows the results from the calculation of 
the maximum pressure at the wall at the instant of 

cavity closure, referred to the pressure induced by 

! f 
J / 

/ 

/ /  

) /  
f "  / 

/ 

I 
2 3 z~ 5 ~ 8 / 0  20  30 ~ 0  ~o 

/ 
/ 

/ 

Fig .  4. M a x i m u m  p r e s s u r e  on wa l l  at  the  i n s t a n t  of  cav i ty  
c l o s i n g  as  a func t ion  of ~0: 1) 5 = 10-2; 2) 10-3; 3) 10 -4 . 
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the  cav i ty  on i t s  c l o s u r e  in an inf in i te  f lu id  at  the  s a m e  
d i s t a n c e .  

With a r educ t ion  in the  in i t i a l  d i s t a n c e  f rom the 
wal l ,  the r a t i o  of the induced p r e s s u r e  to the p r e s s u r e  
on cav i ty  c l o s u r e  in an inf in i te  f lu id  i n i t i a l l y  d i m i n -  
i she s ,  r e a c h i n g  a m i n i m u m  at fl0 ~ 1.35, and then in-  
c r e a s i n g  s lowly ,  which  is  exp la ined  by the  s ign i f ican t  
inf luence  of the  a p p r o a c h  of the  cav i ty  to the  wal l  d u r -  
ing the  c l o s u r e  p r o c e s s  when Do < 1.35. A c c u r a t e  to 
~0.1%, the  quant i ty  • is  found to be  independent  of 
gas  content  5; the  cu rve  of the funct ion Xmin(B0) is  
shown in F ig .  3. The g e n e r a l  t r e n d  t oward  a r educ t i on  
in the  ~/~* r a t i o  with a r educ t ion  in G0 i s  obv ious ly  
a s s o c i a t e d  with a r educ t ion  in the r a d i a l  a c c e l e r a t i o n  
of the  cav i ty  at  the  ins tan t  of c l o s u r e .  As we can see  
f r o m  the  graph,  fo r  low gas  conten ts  the  i n d u c e d p r e s -  
s u r e  m a y  be many  o r d e r s  of magni tude  s m a l l e r  than 
in an in f in i te  f luid and,  consequent ly ,  the  l a r g e  va lues  
for  the induced p r e s s u r e  p r e d i c t e d  by  t h e o r y  [3, 4] at  
the ins tan t  of c l o s u r e  a r e  in ac tua l  fac t  i m p o s s i b l e .  

The t i m e  fo r  the c o m p l e t e  c l o s u r e  of the  cav i ty  i s  
g r e a t e r  than tha t  c a l cu l a t ed  by Ray le igh  [4]; however ,  
i t  does  not d i f f e r  f rom that  quant i ty  s ign i f i can t ly .  

This  i nves t iga t ion  p e r m i t s  us  to d raw the  i m p o r -  
tant  conc lus ion  that  a t t e m p t s  to d e t e r m i n e  the  k i n e -  
ma t i c  c h a r a c t e r i s t i c s  of cav i ty  mot ion  dur ing  the f inal  
s t ages  of c l o s u r e - - i n v o l v i n g  the  u s e  of the a s s u m p t i o n  
of s p h e r i c a l  s y m m e t r y  of f l ow- -canno t  y i e ld  s a t i s f a c -  
t o r y  r e s u l t s .  The a s y m m e t r y  ex i s t i ng  under  r e a l  con-  
d i t ions  is  caused  by  the p r o x i m i t y  of the  b o u n d a r i e s  o r  
by  o t h e r  nonun i fo rmi t i e s  in the  flow as ,  fo r  example ,  

ad j acen t  c a v i t i e s ,  and so it m u s t  l ead  to an e x c e s s i v e l y  
p ronounced  quant i t a t ive  d i f f e r e n c e  be tween  the  t h e -  
o r e t i c a l  and ac tua l  p a r a m e t e r s  of c av i t y  mot ion .  The 
e x p e r i m e n t a l l y  r e c o r d e d  and unexp la ined  p ronounced  

r educ t ion  r e l a t i v e  to the t h e o r e t i c a l  va lue  for  the  r a -  
d ia l  ve loc i t y  of the cav i ty  du r ing  the f inal  c l o s u r e  
s t a g e s  [5] is  in a l l  p r o b a b i l i t y  p r e c i s e l y  a r e s u l t  of 
th i s  c i r c u m s t a n c e .  

NOTATION 

p, p, T, and ~ a r e  the  p r e s s u r e ,  dens i ty ,  k ine t i c  
ene rgy ,  and po ten t ia l  of the f luid flow; P0 = P - Ps i s  
the  p r e s s u r e  d i f f e r e nc e  at  i n f i n i t y a n d  of the  s a t u r a t e d  
v a p o r s ;  ~ is  the  d i m e n s i o n l e s s  p r e s s u r e ;  Pg0 i s  the  
in i t i a l  gas  p r e s s u r e  in cav i ty ;  6 i s  the  r e l a t i v e  gas  
content ;  y i s  the  ad i aba t i c  exponent ;  R and b a r e  the  
r a d i u s  of s p h e r i c a l  cav i ty  and the d i s t a n c e  f r o m  i t s  
c e n t e r  to the  walI  a s  a funct ion of t i m e ;  R 0 and b 0 a r e  
the  s a m e  at the  in i t i a l  ins tan t ;  y is  the  r e l a t i v e  change 
of cav i ty  d i s t a n c e ' f r o m  wal l ;  t i s  the  t i m e ;  z = 
= t/R0(P0/p) 1/2 i s  the d i m e n s i o n l e s s  t i m e ;  AT* i s  the  

g 

t i m e  of c o m p l e t e  c lo s ing  of the  v a p o r  cav i ty  in the  i n -  
f in i te  f luid;  x and y a r e  the  C a r t e s i a n  c o o r d i n a t e s ,  o r i -  
gin at  s p h e r e  cen te r ,  wi th  the  x - a x i s  d i r e c t e d  to the  
wal l .  
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