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We examine the effect of a solid wall on the closure of a spherical
cavitation cavity or pocket. It is demonstrated that asymmetric flow
substantially reduces the induced pressure and rate of closure for the
cavity containing the gas, while in the case of a vapor cavity asym-
metry of flow leads to conclusions qualitatively different from those
which follow from the classical Rayleigh solution for an infinite fluid.

Based on the method of reflections, the mathemati-~
cal apparatus for the description of the phenomena in-
volved in the closure of spherical cavities containing a
gas near a solid boundary has been developed in detail
{1]. The radial oscillations at the wall of a spherical
cavity containing a large quantity of gas have been
studied in [2]. We employ the same methods below to
examine the closure at the wall of a cavity with a re-
latively low gas content, as is characteristic for the
phenomenon of vapor cavitation.

Limiting ourselves to the reflection of a single
source and a single dipole, which is equivalent to ne-
glecting powers of & = R/2b above the first as small
in comparison with unity, we can write the flow po-
tential in the form

s AR 11 1 }
? dt {w A7 i 17
_ R Ay x x—2b

2 dt {(x2+y2)3/2 [(x — 2B + yﬂ}“‘ﬂ}

The first terms in the braces correspond to the
radial and translational motion of a real sphere, while
the second terms correspond to the reflection of that
motion at the point with the abscissa x = 2h.

The kinetic energy of the liquid can be calculated
from the values of the potential and its derivatives at
the boundary surfaces, these values having been de-
termined from the boundary conditions; equally accu-
rate is the following value of the kinetic energy:
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There is no term which takes into consideration the
mutual effect of the radial and translational motion on
the magnitude of the kinetic energy, since that term
has the order O(e%). The second term in (2) represents
the kinetic energy for the motion of a sphere in an in-
finite fluid, since the influence of the wall introduces a
connection into the order, i.e., O(s%. Use of the value
for the kinetic energy from (2) by means of the method
of generalized coordinates enables us to derive a sys-

tem of differential equations for the radial and trans-
lational motion of the cavity:
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The system of differential equations (3) has been
derived with the assumption that the gas in the pocket
is adiabatically compressed, i.e., v = 4/3. With the
cavity removed to infinity from the wall we have ¢ —
— 0, 8 — 0, and 3 — 0, and consequently, the left-
hand part of the second equation is identically zero,
while the first equation changes into the familiar
equation for the radial motion of a cavity in an infi-
nite fluid
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The solution of this equation can be derived analyti-
cally [3]. The velocity of the pocket boundary is given
by the relationship
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The maximum velocity [sic] on closure has the value
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The approximate equality here and helow corresponds
to low gas contents, i.e., § < 1072, The minimum
cavity radius is
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The maximum pressure corresponds to the instant of

closure, and when the condition ¢ < 1 is satisfied we
have
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In the case of a vapor cavity (6 = 0) we can calcu-
late [4] the time of its complete closure:

* 172
At = _iRt— (—”L> — 0.915. ©)
o g

In analogy with the method employed in the solution
of Eq. (4), excluding the time t and treating the radius
7 as an independent variable, we can reduce the order
of system (3) to unity:
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Analytically, the systems of differential equations
(3) and (10) cannot be integrated. The solution is
achieved numerically, with the use of computers; sys-
tem (3) was solved by the Runge~-Kutta method, and
system (10) was solved by the iteration method. The
difference in the results of the solutions does not ex-
ceed 1%. Simultaneous with the determination of the
kinematic characteristics of cavity motion, we calcu-
lated the pressure at the wall and at the critical point
b, where the pressure is at its maximum. The utiliza-
tion of the Lagrange-Cauchy integral and the value of
the potential from (1) make it possible for us to derive
an expression for the pressure at this point in the
form
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In the case of an infinite fluid [3] at a great distance
from the cavity
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Consequently, . with sufficiently adequate distance
between the cavity and the wall—in which case the sec-
ond and third terms in (11) can be neglected—the pres-
ence of the wall under the condition of equality be~
tween the radial velocities and accelerations leads to
a doubling of the pressure.

The initial conditions for which the solution of the
system of equations (3) and (10) was carried out cor-
responds to the assumption that the cavity is at rest
at the initial instant of time and that the pressure dif-
ference between infinity and the inside of the cavity is
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given by Ap = py(1 — &) whent =0, 5= 1, 8 = g, n=
=0, 8 =0. The cavity growth phase which follows the
compression phase subsequent to the cavity reaching
its minimum dimension 7y, i, was not calculated, since
the solution—as in the case of an infinite fluid—for
Nmin 1S symmetric. i

The numerical calculations were carried out for
four values of the gas contents: 6 = 0, 1074, 1073,
1072, and for seven values of the initial distance from
the wall: g, = 1.1, 1.2, 1.5, 2.0, 5.0, 10, 100. For
the case in which 8; — «, we use an analytical solu-
tion.

Figure 1 as an example shows the results from the
calculation of cavity closure for the cgse_ﬁo'z 1.5, 6 =
= 1074 in the form of curves showing 1, 8, 1, B, x =
= B/By, & = T/AT*, and ¢ as a function of the relative
radius 7. Analysis of these results shows that on clo~
sure the velocity of the cavity toward the wall is of the
same order of magnitude as the radial velocity. The
basic translational displacement of the cavity occurs
during the final stages of closure, and when 1 = nyip
the velocity of the translational motion reaches its
maximum. The picture for the radial motion corre-
sponds qualitatively to the closure of a gas-filled cav-
ity in an infinite fluid; however, quantitatively speak~
ing, the velocity, acceleration, and induced pressure
are considerably smaller, while the minimum radius
and closure time are greater. Figure 2 shows the re~
sults from a calculation of the velocity as a function
of both the radius and the initial distance from the
wall for a gas content of 6 = 0. Our attention is drawn
to the fact that, qualitatively, the effect of a reduction
in the initial distance from the wall is analogous. to the
effect of an increase in the gas content when the cavity
in an infinite fluid is closed. The results from the cal-
culations of the minimum cavity radius 7y,in{(By; 6) are
shown in Fig. 3.

Analysis of the derived results shows that the
greater the initial distances, the smaller the gas con-
tent and that these distances are affected by the pres~
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Fig. 1. Functions 1, 8, 1, B, x, @, and ¢

versus the relative radius nfor g, = 1.5

and 6 = 1074 1) ’;]; 2) 8; 3) 4 B, 5 y;
6) a; 7) 8.
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Fig. 2. Radial velocity of closing vapor cavity (6 = 0) as a
function of the radius n for various initial distances from

the wall: 1) g, = 1.1; 2) 1.2; 3) 1.5; 4) 2; 5) 5; 6) 10;
7) 100.

ence of the wall. Unanticipated is the substantial in-
fluence of the wall on the closure of a cavity with a gas
content of 6 = 107* at a distance as large as g, = 100.
This result indicates the strong effect of even slight
asymmetry of flow on the final stage of closure; this is
also borne out by the qualitative difference in the be-
havior of the vapor cavity (6 = 0) at the wall and in an
infinite fluid: despite the absence of gas in the cavity,
complete closure of the cavity does not occur.

The explanation of the derived result lies in the fact
that in the presence of a wall a portion of the potential
energy—which the fluid exhibits at the inifial instant of
time—changes into the kinetic energy of translational
motion, so that the presence of the wall leads to a re-
duction in the velocity of radial motion fortheboundary
of the cavity, while in the case of a vapor cavity it
leads to the appearance of conditions under which its
complete closure proves to be impossible. This con-
clusion is a consequence of the assumption that the
cavity retains its spherical shape. Indeed, because of
the accelerated translational motion, the diagram
showing the pressure distribution over the surface of
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Fig. 3. Minimum cavity radius nmin{3,6) and function
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the cavity is exceedingly nonuniform, inconnectionwith
which—in the later stages of closure—the cavity must
undergo strong deformation, subsequently collapsing.
It can be demonstrated that the distribution of pres-
sures over the surface of a moving sphere is described
by the relation

9 cos 8 — 5 cos 6 i3
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= arctg

In connection with the condition that the cavity re-
tain its spherical shape, in the over-all balance of
forces applied to the boundary of the cavity, the sur-
face-averaged pressure plays a role:
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The last integral in (14) is equal to zero; consequently,
the average pressure resulting from the nonsteady na-
ture of the motion is equal to zero. Thus, because of
the translational motion of the cavity, a pressure is
developed on the cavity surface, the average magni-
tude of this pressure is determined by the velocity,
and it is a negative value, which is equivalent to the
presence in the cavity of a gas with a pressure deter-
mined from relationship (14). When the cavity attains
its minimum dimension, its velocity of translational
motion and, consequently, its tensile stresses are at
their maximum.

Figure 4 shows the results from the calculation of
the maximum pressure at the wall at the instant of
cavity closure, referred fo the pressure induced by
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Fig. 4. Maximum pressure on wall at the instant of cavity

closing as a function of By 1) 6 = 107%; 2) 1073; 3) 1074
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the cavity on its closure in an infinite fluid at the same
distance.

With a reduction in the initial distance from the
wall, the ratio of the induced pressure to the pressure
on cavity closure in an infinite fluid initially dimin-
ishes, reaching a minimum at g, ~ 1.35, and then in-
creasing slowly, which is explained by the significant
influence of the approach of the cavity to the wall dur-
ing the closure process when g, < 1.35. Accurate to
~0.1%, the quantity Xmin is found to be independent of
gas content §; the curve of the function Xmin(go) is
shown in Fig. 3. The general trend toward a reduction
in the ¢/8* ratio with a reduction in g, is obviously
associated with a reduction in the radial acceleration
of the cavity at the instant of closure. As we can see
from the graph, for low gas contents the induced pres-
sure may be many orders of magnitude smaller than
in an infinite fluid and, consequently, the large values
for the induced pressure predicted by theory [3, 4] at
the instant of closure are in actual fact impossible.

The time for the complete closure of the cavity is
greater than that calculated by Rayleigh [4]; however,
it does not differ from that quantity significantly.

This investigation permits us to draw the impor-
tant conclusion that attempts to determine the kine-
matic characteristics of cavity motion during the final
stages of closure—involving the use of the assumption
of spherical symmetry of flow—cannot yield satisfac-
tory results. The asymmetry existing under real con-
ditions is caused by the proximity of the boundaries or
by other nonuniformities in the flow as, for example,
adjacent cavities, and so it must lead to an excessively
pronounced quantitative difference between the the-
oretical and actual parameters of cavity motion. The
experimentally recorded and unexplained pronounced
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reduction relative to the theoretical value for the ra-
dial velocity of the cavity during the final closure
stages [5]1is in all probability precisely a result of
this circumstance.

NOTATION

p, o, T, and ¢ are the pressure, density, kinetic
energy, and potential of the fluid flow; p; = P~ Ps is
the pressure difference at infinity-and of the saturated
vapors; ¢ is the dimensionless pressure; Pgo is the
initial gas pressure in cavity;  is the relative gas
content; v is the adiabatic exponent; R and b are the
radius of spherical cavity and the distance from its
center to the wall as a function of time; R and by are
the same at the initial instant; y is the relative change
of cavity distance from wall; t is the time; 7 =
= 1:/Ro(po/p)1/2 is the dimensionless time; AT* is the
time of complete closing of the vapor cavity in the in-
finite fluid; x and y are the Cartesian coordinates, ori-
gin at sphere center, with the x-axis directed to the
wall.
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